(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
bin(x, 0) → s(0)
bin(0, s(y)) → 0
bin(s(x), s(y)) → +(bin(x, s(y)), bin(x, y))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(2n):
The rewrite sequence
bin(s(x), s(y)) →+ +(bin(x, s(y)), bin(x, y))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [x / s(x)].
The result substitution is [ ].
The rewrite sequence
bin(s(x), s(y)) →+ +(bin(x, s(y)), bin(x, y))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1].
The pumping substitution is [x / s(x), y / s(y)].
The result substitution is [ ].
(2) BOUNDS(2^n, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
bin(x, 0') → s(0')
bin(0', s(y)) → 0'
bin(s(x), s(y)) → +'(bin(x, s(y)), bin(x, y))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
bin(x, 0') → s(0')
bin(0', s(y)) → 0'
bin(s(x), s(y)) → +'(bin(x, s(y)), bin(x, y))
Types:
bin :: 0':s:+' → 0':s:+' → 0':s:+'
0' :: 0':s:+'
s :: 0':s:+' → 0':s:+'
+' :: 0':s:+' → 0':s:+' → 0':s:+'
hole_0':s:+'1_0 :: 0':s:+'
gen_0':s:+'2_0 :: Nat → 0':s:+'
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
bin
(8) Obligation:
TRS:
Rules:
bin(
x,
0') →
s(
0')
bin(
0',
s(
y)) →
0'bin(
s(
x),
s(
y)) →
+'(
bin(
x,
s(
y)),
bin(
x,
y))
Types:
bin :: 0':s:+' → 0':s:+' → 0':s:+'
0' :: 0':s:+'
s :: 0':s:+' → 0':s:+'
+' :: 0':s:+' → 0':s:+' → 0':s:+'
hole_0':s:+'1_0 :: 0':s:+'
gen_0':s:+'2_0 :: Nat → 0':s:+'
Generator Equations:
gen_0':s:+'2_0(0) ⇔ 0'
gen_0':s:+'2_0(+(x, 1)) ⇔ s(gen_0':s:+'2_0(x))
The following defined symbols remain to be analysed:
bin
(9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol bin.
(10) Obligation:
TRS:
Rules:
bin(
x,
0') →
s(
0')
bin(
0',
s(
y)) →
0'bin(
s(
x),
s(
y)) →
+'(
bin(
x,
s(
y)),
bin(
x,
y))
Types:
bin :: 0':s:+' → 0':s:+' → 0':s:+'
0' :: 0':s:+'
s :: 0':s:+' → 0':s:+'
+' :: 0':s:+' → 0':s:+' → 0':s:+'
hole_0':s:+'1_0 :: 0':s:+'
gen_0':s:+'2_0 :: Nat → 0':s:+'
Generator Equations:
gen_0':s:+'2_0(0) ⇔ 0'
gen_0':s:+'2_0(+(x, 1)) ⇔ s(gen_0':s:+'2_0(x))
No more defined symbols left to analyse.