(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

bin(x, 0) → s(0)
bin(0, s(y)) → 0
bin(s(x), s(y)) → +(bin(x, s(y)), bin(x, y))

Rewrite Strategy: FULL

(1) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(2n):
The rewrite sequence
bin(s(x), s(y)) →+ +(bin(x, s(y)), bin(x, y))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [x / s(x)].
The result substitution is [ ].

The rewrite sequence
bin(s(x), s(y)) →+ +(bin(x, s(y)), bin(x, y))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1].
The pumping substitution is [x / s(x), y / s(y)].
The result substitution is [ ].

(2) BOUNDS(2^n, INF)

(3) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

bin(x, 0') → s(0')
bin(0', s(y)) → 0'
bin(s(x), s(y)) → +'(bin(x, s(y)), bin(x, y))

S is empty.
Rewrite Strategy: FULL

(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(6) Obligation:

TRS:
Rules:
bin(x, 0') → s(0')
bin(0', s(y)) → 0'
bin(s(x), s(y)) → +'(bin(x, s(y)), bin(x, y))

Types:
bin :: 0':s:+' → 0':s:+' → 0':s:+'
0' :: 0':s:+'
s :: 0':s:+' → 0':s:+'
+' :: 0':s:+' → 0':s:+' → 0':s:+'
hole_0':s:+'1_0 :: 0':s:+'
gen_0':s:+'2_0 :: Nat → 0':s:+'

(7) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
bin

(8) Obligation:

TRS:
Rules:
bin(x, 0') → s(0')
bin(0', s(y)) → 0'
bin(s(x), s(y)) → +'(bin(x, s(y)), bin(x, y))

Types:
bin :: 0':s:+' → 0':s:+' → 0':s:+'
0' :: 0':s:+'
s :: 0':s:+' → 0':s:+'
+' :: 0':s:+' → 0':s:+' → 0':s:+'
hole_0':s:+'1_0 :: 0':s:+'
gen_0':s:+'2_0 :: Nat → 0':s:+'

Generator Equations:
gen_0':s:+'2_0(0) ⇔ 0'
gen_0':s:+'2_0(+(x, 1)) ⇔ s(gen_0':s:+'2_0(x))

The following defined symbols remain to be analysed:
bin

(9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol bin.

(10) Obligation:

TRS:
Rules:
bin(x, 0') → s(0')
bin(0', s(y)) → 0'
bin(s(x), s(y)) → +'(bin(x, s(y)), bin(x, y))

Types:
bin :: 0':s:+' → 0':s:+' → 0':s:+'
0' :: 0':s:+'
s :: 0':s:+' → 0':s:+'
+' :: 0':s:+' → 0':s:+' → 0':s:+'
hole_0':s:+'1_0 :: 0':s:+'
gen_0':s:+'2_0 :: Nat → 0':s:+'

Generator Equations:
gen_0':s:+'2_0(0) ⇔ 0'
gen_0':s:+'2_0(+(x, 1)) ⇔ s(gen_0':s:+'2_0(x))

No more defined symbols left to analyse.